If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6-12t-3t^2=0
a = -3; b = -12; c = +6;
Δ = b2-4ac
Δ = -122-4·(-3)·6
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-6\sqrt{6}}{2*-3}=\frac{12-6\sqrt{6}}{-6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+6\sqrt{6}}{2*-3}=\frac{12+6\sqrt{6}}{-6} $
| -(4x+1)=-16 | | 6x-17=4x+6 | | 1-7n=-4(-7+4n) | | 3(n+4)=1/4(6n+4) | | (5x-3)+(6x-11)=180 | | 3(n+4)=1/4(6n+4 | | 3h-5+11=15 | | -126=6(-6n-3) | | −4(4x−2)+2x−5= −81 | | 3/4(4x+8)-2/3x=-21 | | (15+3i)-(-10+8i)= | | 18=6t+12 | | 2(3x-5)^2=98 | | 2(3x-5)^2-98=0 | | 4x2+6x-1=0 | | 3=3-2x+7x | | 2(1/2)/x=1(1/4)/3(1/5) | | 6(x+2)=3” | | -3/4=6x | | y=13*5+15 | | -28-4a=-4(1-a) | | (1/2x+24)+(3x-46)=86 | | 0+0.5y=25 | | 20x+4=108 | | -1/4(x+2)+5=x | | -7(1-7n+5(8-3n)=-1 | | -6=-2x+8=7 | | y−3=5(2) | | 9a^2-26a+98=0 | | u+1.6=3.38 | | 44=y^2+4 | | -2x-(4-8x)=26-4x |